IOWA STATE UNIVERSITY

Dept. of Chemical and Biological Engineering

Karl O. Albrecht, Justinus A. B. Satrio, Brent H. Shanks, Thomas D. Wheelock

Development of a Catalyst/Sorbent for Methane Reforming

Process is based on the following reactions:

CH₄ + H₂O ↔ CO + 3H₂ $\Delta H_{2500} = 210 \text{ kJ/mol}$

 $CO + H_2O \leftrightarrow CO_2 + H_2$ $\Delta H_{25^{\circ}C}$ = -42 kJ/mol

Proposed single-step process for producing hydrogen combines preceding reactions with the following reaction:

(3) CaO + CO₂ ↔ CaCO₃

 $\Delta H_{25^{\circ}C} = -175 \text{ kJ/mol}$

Introduction

Single-step process is made possible by development of a combined catalyst and sorbent in the form of core-in-shell pellets

Overview

A combined

catalyst and sorbent for

reforming CH₄ is being developed by encapsulating a

CaO core in a porous alumina

shell that supports a Ni

catalyst all within a

small spherical

pellet.

Results of a laboratory scale demonstration with a reactor packed with these pellets are shown in Table 1 and are compared with and without CO2 absorption.

Table 1. Product gas composition (Dry Basis, mol %) resulting from reforming CH, by

	With CO ₂ Absorption	Without CO ₂ Absorption
H ₂	96.3	75.5
CO	1.3	7.2
CO2	1.7	15.1
CH ₄	0.9	2.3

Shell Development

Need: Strong, porous material with large surface area to support Ni catalyst

Such material is made by calcining a mixture of crystalline and amorphous Al₂O₃ powders with added CaO or La₂O₃. The effects of incorporating 5 wt% powdered limestone on cast 6 mm diameter cylindrical pellets of Al₂O₃ are indicated by Figure 3. Results show maximum strength is obtained with 3 µm size limestone

Figure 3. Breaking force and surface area of cast pellets with 5 wt% limestone of various sizes. Pellets were calcined at either 900°C

The effects of combining Al₂O₃ with either Ca(NO₃)₂, La(NO₃)₃ or Ba(NO₃)₂ before preparing and calcining the cast pellets are indicated by Figure 4 for equivalent concentrations of additives. Results show La2O3 provides a great increase in strength.

Figure 4. Breaking force and surface area of cast pellets made with equivalent of s of additives. Pellets were calcined

Core-in-Shell Pellets with different concentrations of La2O3 in the shell produced the results indicated by Figure 5. Again 7.7 wt% La₂O₃ produced a large increase in

Figure 5. Breaking force of core-in-shell pellets with different concentrations of La₂O₃ in the shell and calcined at different temperatures. Pellets were calcined at either 900°C for 3 hr or 1100°C for 2 hr before testing.

Sorbent Core Development

Need: A highly reactive material capable of withstanding repeated absorption of CO2 and regeneration over many cycles.

Results of cyclic absorption and regeneration tests conducted over 80 cycles at 750°C are shown in Figure 1 for 3 μm limestone and -212/+63 μm dolomite. The materials were precalcined at either 900°C for 3 hr or 1100 °C for 5 hr. Results of similar tests conducted over 200 cycles with uncalcined and precalcined 3 μm limestone are shown in Figure 2.

Figure 2. TGA results of cyclic absorption and regeneration tests made with both uncalcined and precalcined limestone (3 um).

A comparison of the two sets of results suggests that the limestone has an ultimate absorption capacity of 6 mmol CO₂/g sorbent.

Accomplishments, Present and Future

- Sorbent Improvement

 •Absorptivity of CaO declines with usage
- •Rate of decline may be inhibited by MaO
- •Testing of sorbent with additive will be extended to 1000 cycles or more

Catalyst/Shell Improvement

- •A promising shell material composed of Al₂O₃ and La₂O₃ has been formulated and subjected to limited testing
- •The usefulness and durability of this material as a catalyst support and shell material will be thoroughly tested in the future

Performance Evaluation of Core-in-Shell Pellets

- •Core-in-shell pellets combining the best formulations of the components will be prepared and evaluated by reforming CH4 at different temperatures and pressures
- Pellets will also be subjected to limited life-cycle testing

Application for the Water Gas Shift Reaction

•Pellets developed for reforming CH₄ will also be tested for the reaction of CO